Deloitte. Getting Multi-Cloud Right The First Time **David Linthicum** May 2020 ### Key Drivers for a Multi-Cloud Environment We believe multi-cloud can drive increased cost efficiency and flexibility while tapping in to technology innovation democratized in the cloud #### **Multi-Cloud Adoption Drivers** - Improve resiliency and reliability by distributing workloads across multiple cloud service providers - Increase business agility through greater access to the latest technologies across multiple providers - Optimize the best of breed of cloud computing solutions across the various Cloud Service Providers - Meet current and future requirements of **governance**, **security**, **privacy**, **risk management and compliance regulations** #### **Multi-Cloud Environment Benefits** #### **Business Continuity** Improve geographic presence and disaster recovery in response to outages #### **Cost Reduction** Reduce operating cost with more competitive price #### **Vulnerability Mitigation** Reduce vulnerability risk by limiting blast radius with multiple Cloud Service Providers #### **Technology Innovation** Adopt the latest technologies from different leading service providers #### **Service Flexibility** Offers true flexibility to implement solutions that best fit each business workload to optimize performance #### **Data Gravity Reduction** Reduce latency caused by exploding data volume on single cloud service provider platform An IDC study found that 86% of enterprises predict that they will need a Multi-Cloud approach to support their solutions within the next two years ### **Key Considerations for Multi-Cloud Strategy** Getting multi-cloud right means being thoughtful about how you approach it Security - Embed integrated, next generation security and privacy concepts into requirements, design, build, and testing. Compliance - Meet regulatory compliance and data residency requirements e.g., GDPR, GxP's and Part 11 Cost - Move workloads to cheaper regions. Leverage cloud policies to manage cloud spend by real time alerts **Disaster Recovery (DR)** – Provide resiliency against cyberattacks and data center outages **Portability** – Provide portability through the ability to migrate from the cloud to another using automated deployment scripts (Terraform, Ansible, etc.) **Data Management** – Multiple providers for different workloads with different performance and capacity requirements Infrastructure right sizing - On-demand and distributed virtualized application mobility **Lower Latency** – Proximity of geographically distributed customers to cloud data centers ### Challenges of Multi-Cloud Environments While multi-cloud strategy improves performance, minimizes risk of downtime, and avoids data loss, challenges can be significant #### Resource constraints Requires excellent infrastructure and resource expertise as cross functionality across teams is required #### Transitioning complexity - Application feasibility review required before choosing cloud platform - Same application should not be on multiple clouds #### Management Complexity - Need a robust multi-cloud management portal - A standard set of interfaces and capabilities can be provided as APIs might not be compatible #### Compliance with Governance - Multiple cloud vendors have to meet the company's compliance requirements - Right resources should have access to the right applications - Quality Agreements driving GxP compliance requirements #### Procurement, Billing and Accounting - O Company has to compare cloud providers and handle multiple invoices - Potential for lower discount rates due to multiple providers #### Security - Strong identity management is required between different cloud providers - Disparate solutions with different, inconsistent approaches to integrating security concepts ### **Key Considerations & Best Practices** There are different flavors of multi-cloud based on the specific needs of your business ### Connecting Legacy Data Centers to Private Clouds - Increased communication load on legacy infrastructure - Complex integration architecture mainly point-to-point - Transition from monolithic or service oriented architecture to micro services architecture ### Connecting Internal & External Infrastructure - Implementation of multi layered security and access controls / link encryption - Dynamic management (policy driven) of routing,, quality of service, performance - Storage and data management, esp. online and transactional data ### Connecting Multiple Cloud End-Points - Multi-nodal service management capabilities with exponential growth in end points - Additional points of failure, increased issue complexity drives increased MTTR - Multiple toolsets drive complexity and overhead - Balancing data security and privacy, governance, cost, and utility objectives ### Proactively Governing Technology and Vendors - Maintenance of multiple vendor specific policies, SLAs - · Increased configuration management complexity - Applying on premise risk, security, compliance for vendor provided services - Balancing data privacy, governance, cost, and utility objectives ### Deloitte's Framework for Multi-Cloud Execution Our holistic framework means that we can support Baxter at every stage of your multi-cloud journey | Key Considerations | | | | | | | |--------------------|----------------------|-----------------------|-------------|----------------------|--|--| | Modernization | Security and Privacy | Complexity Management | Use Cases | DevOps & Agile | | | | Migration | Monitoring | Innovation | Deployments | Financial Management | | | Operate ### Our Comprehensive Approach to Cloud Assessment, Strategy and Planning We take an asset and methodology driven approach to define the path forward for our clients' multi-cloud journey ### Assessment: Our Asset Driven Approach to Migrating to a Multi-cloud Environment Differentiator: We have invested in a methodology and ATADATA toolset that drive at scale migrations to public cloud #### **Assessment** "Facts first" understanding of your IT ### **ATAVision**™ Discovery - Overview: Automated approach to data collection that details a customer's server inventory - Outcome: An objective, holistic depiction of a customer's server and application inventory, including interdependencies and affinities by mapping to application and database end points - Features: - Server & application inventory - Application affinity mapping - Migration wave grouping - CloudCast cost projections #### Migrate Mobility for any infrastructure ### ATAMotion[™] ATATransform[™] - Overview: Live workloads migrated to most any physical, virtual, or cloud environment - Outcome: Simplifies Windows and Linux migrations with its prioritized options and innovative architecture. - Features: - Auto-provisioning of targets - Multi-threaded transfer engine - Migrate from source to most any targets #### **Operate** Re-imagined management capability for Hybrid IT ### **ATASphere**™ Management - Overview: Manage your Hybrid IT environment and allow for automatic OS upgrades - Outcome: Avoids vendor lock-in and accelerates your transformation; provides a comprehensive view and the insights to flexibility to adapt - Features: - Hybrid IT enablement - Manage Brownfield workload mobility - Orchestrate deployment of Greenfield workloads #### **Mitigate to Protect** A Multi-Cloud Disaster Recovery Solution ## **ATA**Mirror[™] - Overview: Achieve cost and operational efficiencies for availability - Outcome: Ensures data availability - Features: - Replication of the most any server - Multi-region protection scenarios - Automated failback capability #### **Auto-Discovery** Data Driven Automate asset identification and application mappings #### Agentless Avoid manual effort to install agents across enterprise ### Proprietary Clone Engine Enables bulk parallel migrations for faster results Provisioning Supports diverse hybrid cloud environments #### **ATADATA Benefits** #### Autovisioning Upgrades Upgrade your OS to standardize and rationalize your IT #### Vendor Agnostic Supports 8 hypervisors and 20 cloud environments #### Secure Data Paths Direct source to target migration with no data off premises #### No Downtime Servers can be migrated live before cutover without downtime ### Cloud Center of Excellence: Manage Migration and establishing Governance Moving to multi-cloud creates additional complexity that requires a robust organizational construct to manage the overall cloud footprint ### Revising the Operating Model in Anticipation of Multi-Cloud (1) Moving to multi-cloud increases an organization's need to focus on maturing the operating model in response to cloud ### Revising the Operating Model in Anticipation of Multi-Cloud (2) Maturing the operating model means taking action across multiple dimensions | | | | ng model medilis taking detion o | | | | |---|----------------|---------------------------|---|---|---|---| | | | | | | | | | | n c | | Cloud 1.0 - Foundational | Cloud 2.0 - Transformative | Cloud 3.0 - Innovative | Cloud 4.0 - Exponential | | 1 | Transformation | Symphonic Organization | Define the interaction between teams on how the flow of work gets performed in the cloud Identify new roles, responsibilities and skills required to build, adapt and operate cloud | Augment with cloud specific roles, working models supporting the new operating model Adopt working models such as Platform teams and Cloud Business Office (CBO) | Transform IT operating model to optimize the people, process and technologies in distributed environment | Incubate agile, multi-functional teams which are proficient in cloud capabilities | | | Trans | Cloud Native Competencies | being the gaps in competencies and provide | Implement organizational change
management process to facilitate transition
Develop a transition plan from being
operators & administrators to being
developers of automation & cloud solutions | Shift mindset from siloed teams & work queues to product-centric, cross-functional teams Evaluate resources & map current vs. future competencies required to run Cloud Native applications and services | Build in-house center of excellence to incubat
best practices and best-in-class cloud trends
and technologies
Partner with HR/ Talent and establish specific
incentive programs | | 2 | | Governance
& KPIs | Establish a governance framework for cloud
& leverage methods such as automation &
continuous monitoring Establish necessary policies & check points | Align KPIs with overall cloud strategy
Identify KPIs & develop dashboards across
strategic, executive and operational levels | Enhance existing capabilities to address the requirements for multi cloud setup | Oversee overall performance and manage
contracts of external advisors and vendors | | | overnance | Security & Compliance | Setup a system to design & manage security policies and compliance consistently across cloud vendors and business units Ensure the organization has preventive, detective, and corrective controls | Ensure cloud platform & software is auditable and compliant with defined security controls & policies Design architectures to accelerate recovery and reduce incident response time | Create comprehensive visibility of cloud assets
down to the guest-level by providing visibility and
detection beyond the traditional perimeter
(enterprise networks, legacy data centers, on-
premise users) | Build resilient, highly-available infrastructure
on cloud, aligned to business requirements be
leveraging elastic and distributed capabilities | | | Э | \$ Cloud Economics | • Setup processes, guidelines, and tooling to manage and optimize cloud spend, spread accountability of cloud optimization across the enterprise | Implement governance policies for the cloud,
have a centralized cloud financial policy for
teams to access
Provide daily reports & enforce usage quotas | Make chargeback granular and traceable by
business unit, application/platform Provide audit trail capabilities, establish approval
processes for new services and regions | Optimize the cloud landing zone design decisions and application patterns during clou adoption as impact grows bigger with the sca of workloads migrated to the cloud | | 3 | б | Cloud
Adoption | Draft gov. policies, standards and procedures Create training program to build competencies Identify remediation to make existing apps cloud ready | Evaluate workloads for cloud suitability Develop architecture standards for cloud native development Develop Applications with cloud principles of multi-tenancy, autoscaling & easy integration | Implement the migration factory, migration roadmap and baseline tools & processes for automation and operations Finalize governance framework for vendor selection & create onboarding process for new users | Optimize KPIs, KRIs & service targets for vend
management
Pilot application migration & phased migratio
Enable use of CI/CD pipelines for faster
provisioning | | | Engineering | Cloud
Platform | Define policies/controls/design patterns for cloud native architecture Define the service catalog, service configuration and deployment policies | Establish Architectural practice and maintain
modular and repeatable patterns
Enable self service access to the self service
catalog | Develop open, scalable architecture to leverage
multiple cloud platforms Develop Cloud Integration architecture & tooling
for on-premise to cloud and cloud to cloud | Orchestration based on user-defined policies
and scripts implemented
Understand business priorities, customer
demand & govern development and delivery | | | En | Cloud Operations | Define and manage configuration, health, performance of cloud infrastructure, platform and SaaS solutions Define processes to monitor the utilization of infrastructure resources to avoid cloud | Centralized monitoring for performance and
health
Monitor and automate failure detection and
self-healing of cloud services and
configurations | Enable cloud service redundancy, resiliency and replication for high-availability and disaster recovery, leveraging cloud provider's built-in capabilities and third-party tooling | Enable compliance monitoring and reporting
for regulatory and audit controls Provided consolidated management of overa
cloud deployment | ### **Optimizing the Multi-Cloud Footprint** Creating a multi-cloud environment is only half the journey. There needs to be a continued focus on keeping this environment efficient # Thank You Questions?